The nucleus locus coeruleus modulatory effect on memory formation: A literature review

Behrooz Khakpour-Taleghani, Mohammad Akhoondian, Adele Jafari


The nucleus locus coeruleus (LC), the main source of norepinephrine in the brain, is connected to memory processing regions such as the hippocampus and baso-lateral amygdala (BLA). The LC and its mostly associated noradrenergic projections, play an important role in memory formation parallel to other neurotransmitter systems. It has been suggested that the unique response characteristics of LC to various situations strengthens different memories formation. Here, we review key related findings of LC effect on memory (avoidance, spatial, cognitive) formation, memory processing regions, memory molecular mechanisms as well as its role in memory related disorders. Literature review was conducted by extensive search on ISI, PubMed and Scopus, online databases from May 2021 to July 2021. According to the obtained results, LC noradrenergic projections to memory processing areas of the brain, can modulate the encoding, consolidation, and retrieval for different memory types. Also, the LC regulates neurogenesis and neural plasticity in different areas of the brain. Evidences suggested that dysfunction of the LC and its associated noradrenergic system may lead to cognitive impairment or a variety of memory-related disorders, including Alzheimer's disease. Finally, it can be concluded that the locus coeruleus noradrenergic system may be a suitable target for the treatment of different memory/cognitive disorders.


Locus coeruleus; Memory; Neurogenesis; Neuronal plasticity; Alzheimer’s disease


Anderson JR. Learning and memory: An integrated approach: John Wiley & Sons Inc; 2000.

Ben-Yakov A, Dudai Y, Mayford MR. Memory Retrieval in Mice and Men. Cold Spring Harb Perspect Biol. 2015; 7(12):a021790.

Morris R, Tarassenko L. Cognitive Systems Remember Experience: Introduction. In: Morris R, Tarassenko L, Kenward M, editors. Cognitive Systems - Information Processing Meets Brain Science. London: Academic Press; 2006. p. 191-2.

Sara SJ. Locus Coeruleus in time with the making of memories. Curr Opin Neurobiol. 2015; 35:87-94.

Fukabori R, Iguchi Y, Kato S, Takahashi K, Eifuku S, Tsuji S, et al. Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons. J Neurosci. 2020; 40(43):8367-85.

James T, Kula B, Choi S, Khan SS, Bekar LK, Smith NA. Locus coeruleus in memory formation and Alzheimer's disease. Eur J Neurosci. 2020; 00:1– 12.

Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L. Novelty and Dopaminergic Modulation of Memory Persistence: A Tale of Two Systems. Trends Neurosci. 2019; 42(2):102-14.

Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012; 76(1):130-41.

Loughlin SE, Foote SL, Bloom FE. Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience. 1986; 18(2):291-306.

Falibene A, Roces F, Rössler W. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants. Front Behav Neurosci. 2015; 9:84.

García-Medina NE, Miranda MI. Nucleus of the solitary tract chemical stimulation induces extracellular norepinephrine release in the lateral and basolateral amygdala. Brain Stimul. 2013; 6(2):198-201.

Segura-Torres P, Aldavert-Vera L, Gatell-Segura A, Redolar-Ripoll D, Morgado-Bernal I. Intracranial self-stimulation recovers learning and memory capacity in basolateral amygdala-damaged rats. Neurobiol Learn Mem. 2010; 93(1):117-26.

McCall JG, Siuda ER, Bhatti DL. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife. 2017; 6:e18247.

Llorca-Torralba M, Suárez-Pereira I, Bravo L, Camarena-Delgado C, Garcia-Partida JA, Mico JA, et al. Chemogenetic Silencing of the Locus Coeruleus-Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biol Psychiatry. 2019; 85(12):1021-35.

Fan Y, Chen P, Li Y, Cui K, Noel DM, Cummins ED, et al. Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions. J Neurochem. 2014; 128(3):445-58.

Shelkar GP, Gakare SG, Chakraborty S, Dravid SM, Ugale RR. Interactions of nitric oxide with α2 -adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine. Br J Pharmacol. 2016; 173(17):2589-99.

Khakpour-Taleghani B, Lashgari R, Aavani T, Haghparast A, Naderi N, Motamedi F. The locus coeruleus involves in consolidation and memory retrieval, but not in acquisition of inhibitory avoidance learning task. Behav Brain Res. 2008; 189(2):257-62.

Crone JS, Schurz M, Höller Y, Bergmann J, Monti M, Schmid E, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage. 2015; 110:101-9.

Baram TZ, Donato F, Holmes GL. Construction and disruption of spatial memory networks during development. Learn Mem. 2019; 26(7):206-18.

Lemon N, Aydin-Abidin S, Funke K, Manahan-Vaughan D. Locus coeruleus activation facilitates memory encoding and induces hippocampal LTD that depends on beta-adrenergic receptor activation. Cereb Cortex. 2009; 19(12):2827-37.

Collier TJ, Greene JG, Felten DL, Stevens SY, Collier KS. Reduced cortical noradrenergic neurotransmission is associated with increased neophobia and impaired spatial memory in aged rats. Neurobiol Aging. 2004; 25(2):209-21.

Khakpour-Taleghani B, Lashgari R, Motamedi F, Naghdi N. Effect of reversible inactivation of locus ceruleus on spatial reference and working memory. Neuroscience. 2009; 158(4):1284-91.

Choudhary P, Pacholko AG, Palaschuk J, Bekar LK. The locus coeruleus neurotoxin, DSP4, and/or a high sugar diet induce behavioral and biochemical alterations in wild-type mice consistent with Alzheimers related pathology. Metab Brain Dis. 2018; 33(5):1563-71.

Litteljohn D, Nelson E, Hayley S. IFN-γ differentially modulates memory-related processes under basal and chronic stressor conditions. Front Cell Neurosci. 2014; 8:391.

Hansen N, Manahan-Vaughan D. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors. Cereb Cortex. 2015; 25(7):1889-96.

Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A. 2016; 113(51):14835-40.

Moreno-Castilla P, Guzman-Ramos K, Bermudez-Rattoni F. Chapter 28 - Object Recognition and Object Location Recognition Memory – The Role of Dopamine and Noradrenaline. In: Ennaceur A, de Souza Silva MA, editors. Handb Behav Neurosci: Elsevier; 2018. p. 403-13.

Evans AK, Park HH, Saw NL, Singhal K, Ogawa G, Leib RD, et al. Age-related neuroinflammation and pathology in the locus coeruleus and hippocampus: beta-adrenergic antagonists exacerbate impairment of learning and memory in aged mice. Neurobiol Aging. 2021; 106:241-56.

Titulaer J, Björkholm C, Feltmann K, Malmlöf T, Mishra D, Bengtsson Gonzales C, et al. The Importance of Ventral Hippocampal Dopamine and Norepinephrine in Recognition Memory. Front Behav Neurosci. 2021; 15:667244.

Glennon E, Carcea I, Martins ARO, Multani J, Shehu I, Svirsky MA, et al. Locus coeruleus activation accelerates perceptual learning. Brain Res. 2019; 1709:39-49.

Mello-Carpes PB, Izquierdo I. The Nucleus of the Solitary Tract → Nucleus Paragigantocellularis → Locus Coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem. 2013; 100:56-63.

Wagner-Altendorf TA, Fischer B, Roeper J. Axonal projection-specific differences in somatodendritic α2 autoreceptor function in locus coeruleus neurons. Eur J Neurosci. 2019; 50(11):3772-85.

Engler A, Zhang R, Taylor V. Notch and Neurogenesis. Adv Exp Med Biol. 2018; 1066:223-34.

Guérin D, Sacquet J, Mandairon N, Jourdan F, Didier A. Early locus coeruleus degeneration and olfactory dysfunctions in Tg2576 mice. Neurobiol Aging. 2009; 30(2):272-83.

Duarte EC, de Azevedo MS, Pereira GA, Fernandes MD, Lucion AB. Intervention with the mother-infant relationship reduces cell proliferation in the Locus Coeruleus of female rat pups. Behav Neurosci. 2017; 131(1):83-91.

Bortolotto V, Bondi H, Cuccurazzu B, Rinaldi M, Canonico PL, Grilli M. Salmeterol, a β2 Adrenergic Agonist, Promotes Adult Hippocampal Neurogenesis in a Region-Specific Manner. Front Pharmacol. 2019; 10:1000.

Fan Y, Zeng F, Brown RW, Price JB, Jones TC, Zhu MY. Transcription Factors Phox2a/2b Upregulate Expression of Noradrenergic and Dopaminergic Phenotypes in Aged Rat Brains Neurotox Res. 2020; 38(3):793-807.

Launay JM, Mouillet-Richard S, Baudry A, Pietri M, Kellermann O. Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry. 2011; 1(11):e56.

Coradazzi M, Gulino R, Fieramosca F, Falzacappa LV, Riggi M, Leanza G. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis. Neurobiol Aging. 2016; 48:93-102.

Xu W, Yu JT, Tan MS, Tan L. Cognitive reserve and Alzheimer's disease. Mol Neurobiol. 2015; 51(1):187-208.

Bergado JA, Frey S, López J, Almaguer-Melian W, Frey JU. Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. Neurobiol Learn Mem. 2007; 88(3):331-41.

Hansen N, Manahan-Vaughan D. Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus. Hippocampus. 2015; 25(11):1285-98.

Quinlan MAL, Strong VM, Skinner DM, Martin GM, Harley CW, Walling SG. Locus Coeruleus Optogenetic Light Activation Induces Long-Term Potentiation of Perforant Path Population Spike Amplitude in Rat Dentate Gyrus. Front Syst Neurosci. 2018; 12:67.

Reid AT, Harley CW. An associativity requirement for locus coeruleus-induced long-term potentiation in the dentate gyrus of the urethane-anesthetized rat. Exp Brain Res. 2010; 200(2):151-9.

Lashgari R, Khakpour-Taleghani B, Motamedi F, Shahidi S. Effects of reversible inactivation of locus coeruleus on long-term potentiation in perforant path-DG synapses in rats. Neurobiol Learn Mem. 2008; 90(2):309-16.

Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, et al. Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry. 2013; 73(5):454-63.

Tamano H, Ishikawa Y, Shioya A, Itoh R, Oneta N, Shimaya R, et al. Adrenergic β receptor activation reduces amyloid β(1-42)-mediated intracellular Zn(2+) toxicity in dentate granule cells followed by rescuing impairment of dentate gyrus LTP. Neurotoxicology. 2020; 79:177-83.

Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex. 2016; 26(4):1349-64.

Mather M, Harley CW. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain. Trends Cogn Sci. 2016; 20(3):214-26.

German DC, Nelson O, Liang F, Liang CL, Games D. The PDAPP mouse model of Alzheimer's disease: locus coeruleus neuronal shrinkage. J Comp Neurol. 2005; 492(4):469-76.

Ross JA, Alexis R, Reyes BAS, Risbrough V, Van Bockstaele EJ. Localization of amyloid beta peptides to locus coeruleus and medial prefrontal cortex in corticotropin releasing factor overexpressing male and female mice. Brain Struct Funct. 2019; 224(7):2385-405.

Aghajanov M, Chavushyan V, Matinyan S, Danielyan M, Yenkoyan K. Alzheimer's disease-like pathology-triggered oxidative stress, alterations in monoamines levels, and structural damage of locus coeruleus neurons are partially recovered by a mix of proteoglycans of embryonic genesis. Neurochem Int. 2019; 131:104531.

Hopp SC, Royer SE, D'Angelo HM, Kaercher RM, Fisher DA, Wenk GL. Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus. J Neuroimmune Pharmacol. 2015; 10(1):35-44.

Olivieri P, Lagarde J, Lehericy S, Valabrègue R, Michel A, Macé P, et al. Early alteration of the locus coeruleus in phenotypic variants of Alzheimer's disease. Ann Clin Transl Neurol. 2019; 6(7):1345-51.

Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis. 2019; 70(2):371-88.

Kaufman SK, Del Tredici K, Thomas TL, Braak H, Diamond MI. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer's disease and PART. Acta Neuropathol. 2018; 136(1):57-67.

Kang SS, Liu X, Ahn EH, Xiang J, Manfredsson FP, Yang X, et al. Norepinephrine metabolite DOPEGAL activates AEP and pathological Tau aggregation in locus coeruleus. J Clin Invest. 2020; 130(1):422-37.

Braun D, Feinstein DL. The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model of Alzheimer's disease. Brain Res. 2019; 1702:29-37.



  • There are currently no refbacks.

Copyright (c) 2021 © The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.